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Abstract The performance of analog circuits is critically dependent on layout par-
asitics, but layout has traditionally been a manual and time-consuming task. Recent
advances in ML have enabled new capabilities to facilitate fast automated place-
ment and routing. This chapter presents an overview of these techniques, including
geometric constraint generation and constrained placement and routing. A variety
of ML techniques are used in various steps of analog placement and routing, in-
cluding graph neural networks, random forest methods, support vector machines,
graph attention networks, generative adversarial networks, reinforcement learning,
and variational autoencoders. This chapter shows how these general ML algorithms
are specifically customized to the requirements of optimized analog layout.

1 Introduction

Design automation researchers have addressed the problemof analog layout synthesis
for several decades [13, 15, 21, 25, 31, 49, 50, 58, 61, 70]. These techniques were
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largely based on a toolbox of traditional algorithms such as numerical analysis,
graph theory, and optimization techniques. However, these methods were generally
unable to compete with a skilled designer in the quality of the solution that was
produced. The problem has enjoyed a recent renaissance due to increasing interest
in analog design as applications place a greater focus on interactions with the analog
real world, and application drivers such as wireless systems and AI hardware make
native analog design more attractive.

Several new approaches have been proposed in the recent past to tackle the
problem of analog layout synthesis. Frameworks such as BAG [8, 14] have fo-
cused on procedural design with significant designer input, while approaches such
as FASoC [3] leverage digital standard cells and digital layout methodologies for
designing “digital analog” circuits. Recent techniques have considered the use of
artificial neural networks for the layout of specific topologies [26] or for knowledge
migration [27].

A new class of methods in MAGICAL [9, 10, 77] and ALIGN [1, 18, 39] has
looked at approaches that could be used with muchmore limited human intervention,
including no-human-in-the-loop automation. These frameworks are facilitated by the
advent of machine learning (ML), which has substantially changed the algorithmic
landscape. Today, with the emergence of artificial intelligence techniques that can
compete with human skill, it is now realistic to think about automated analog layout
that delivers a solution that is comparable in quality to manual design.

A typical analog layout generation flow consists of the following steps:

• Circuit hierarchy specification takes an input netlist and, through either design an-
notation or automated recognition techniques, determines the hierarchical blocks
in the circuit.

• Constraint specification provides guidelines for layout, determining how the
blocks in the circuit hierarchy must be arranged. These constraints include (a) ge-
ometric constraints for symmetrical placement and routing about specified axes,
common-centroid or interdigitated layouts [33], and (b) electrical constraints that
place limits on allowable interconnect RC parasitics during layout while ensuring
that performance constraints are met; typically, this involves tradeoffs and com-
plex relationships, i.e., allowing increased RCs on some wires while ensuring
lower RCs on others.

• Cell generation generates the layout of devices and passives at the lowest level
of the hierarchy, parameterized so that cells may be built for a specified set of
transistor widths and gate lengths; may have a variety of aspect ratios; may be
built with/without body contacts; etc.

• Placement is typically performed hierarchically, with the locations of blocks
being determined at each step while honoring constraints on symmetry and per-
formance, specified in the constraint generation step.

• Routing connects the placed blocks at each hierarchical level, using appropriate
wire widths to ensure that performance specifications are met.

When judiciously used, ML methods can be of great help in automating analog
design. While some steps can be handled using conventional algorithmic techniques
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(e.g., cell generation in FinFET technologies, where the limited degrees of freedom
render the problem amenable to algorithmic layout generation), ML techniques can
help mimic the wisdom of the human designer in other steps. This chapter provides
an overview of ML methods for analog layout. A recent paper [2] presents a survey
of ML methods in analog design in general, and this chapter complements the
overview with an in-depth view of the use of ML in analog layout automation.
Section 2 presents a variety of approaches for circuit annotation and geometric
constraint specification. Next, Section 3 overviews various ML techniques for well
generation, placement, and routing. Finally, the chapter concludes with a view of
future directions for ML-assisted analog layout.

2 Geometric Constraint Generation

2.1 Problem Statement

Geometric constraints help analog designs to achieve high performance and high
yield by making them resilient to PVT variations. Symmetry considerations are
particularly important in specifying constraints to be applied during analog layout
synthesis. Analog designs frequently use differential topologies to reject common-
mode noise, and layout symmetry helps in reducing mismatch between such devices,
which is liable to significantly degrade circuit performance.

The research in extracting geometric constraints automatically has been evolving
rapidly in recent years,motivated by advances inML techniques and the requirements
of analog layout automation [83]. This section presents several ML approaches for
geometric constraint generation. The approaches in Sections 2.2 and 2.3 extract con-
straints based on the results of circuit annotation using graph convolutional networks
and array recognition methods (including approximate graph isomorphism), respec-
tively. The approaches in Section 2.4 and Section 2.5 directly extract the symmetry
constraints, Section 2.4 describes a system-level symmetry constraint extraction al-
gorithm leveraging statistical techniques tomeasure the graph similarity. The circuits
with high similarity in their graph structures are identified as symmetry constraints.
Section 2.5 describes two symmetry constraint extraction techniques using graph
neural network, with supervised learning and unsupervised learning.

2.2 Subcircuit Annotation Using Graph Convolution Networks

A first step in generating constraints is to find hierarchies within a circuit, identifying
specific circuit blocks. If an experienced designer wishes to retain specified hierar-
chies, this step may be skipped. Otherwise, existing hierarchies may be discarded
to find hierarchies that are more amenable to layout and constraint generation. In
analog circuits, this is difficult: a large number of circuit variants exist even for a
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single functionality, e.g., between textbooks [66] and research papers, there are well
over 100 widely used operational transconductance amplifier (OTA) topologies of
various types (e.g., telescopic, folded cascode, Miller-compensated). Truly general-
izable analog automation requires the ability to recognize all variants – including
those that have not even been designed to date. Traditional methods have used two
approaches: (1) library-based [51, 53], matching a circuit to prespecified templates,
and requiring an enumeration of possible topologies in an exhaustive database, or
(2) knowledge-based [30, 71], embedding rules for recognizing circuits; however,
the rules must come from an expert designer who may struggle to provide a list
(many rules are intuitively ingrained rather than explicitly stated). Moreover, it is
difficult to capture rules for all variants. In this section, we describe ML methods for
subcircuit recognition, which can be used to derive circuit hierarchies and block-level
constraints.

As in [59], a circuit netlist is represented by an undirected bipartite graph� (+, �),
where + = +4 ∪ +=. The subsets +4 and += correspond, respectively, to elements
(transistors/passives) in the netlist, and the set of nets. The edge set � consists
of edges between a vertex in +4 corresponding to an element to the vertices in +=
corresponding to nets connected to its terminals. Similar to [43], each edge connected
to a transistor is assigned a three-bit binary label, ;6;B;3 , where ;6/;B/;3 are set to
1 only if the edge from the transistor vertex connects to the net vertex through its
gate/source/drain, respectively. The subcircuit recognition problem is mapped to one
of approximate subgraph isomorphism, with approximation allowing for variations
around a core structure for a circuit block.

In [38], graph convolutional networks (GCNs) are used for this purpose. General
graphs have no unique embedding. A GCN performs convolutions that are indepen-
dent of the embedding of the graph in the plane. Various types of GCNs have been
proposed [16, 28, 29, 35, 80], but they all share a framework that requires three
fundamental steps: (i) the application of localized convolutional filters on graphs,
(ii) a graph coarsening procedure that groups together similar vertices and (iii) a
graph pooling operation for graph reduction. GCN techniques primarily differ in the
nature of the filter that is used for convolution.

A major class of GCNs is based on spectral methods [16, 35], which are inde-
pendent of graph embedding and have been found to be extremely effective and
therefore form the basis of the GCN used in [38]. A spectral representation in the
Fourier space of a graph is enabled through the graph Laplacian representation. The
Laplacian ! ∈ '=×= of an unweighted graph� (+, �) with = vertices is often defined
as � − � where � ∈ '=×= is the adjacency matrix of the graph and � ∈ '=×= is a
diagonal matrix whose diagonal entry corresponds to the degrees of all vertices, i.e.,
the row sums of the adjacency matrix. The normalized Laplacian representation is

! = � − �−1/2��−1/2 (1)

The matrix ! is symmetric, real, and positive definite: it has real nonnegative eigen-
values that are interpreted as the frequencies of the graph.
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The approach proposed by [16] creates spectral filters around a vertex, where
each filter functions within a region of radius  of (i.e., up to  edges away from)
the vertex. A convolution operator on the graph is defined as

H = 6\ (!)G = 6\ (*Λ*) )G = *6\ (Λ)*) G (2)

where the normalized graph Laplacian is eigendecomposed as ! = *Λ*) , and 6\
is a filtering operator that acts on an input signal G to produce an output signal H. In
this case, the signal corresponds to a region of the graph around a specific vertex.

Next, 6\ (!) is parameterized as a polynomial Chebyshev expansion, which trun-
cates the filter expansion to order of  − 1. Given the  top eigenvalues of !
(computed inexpensively using the Lanczos algorithm), for a graph of bounded de-
gree where the number of edges is $ (=), this polynomial can be evaluated using  
multiplications by a sparse ! with a cost of $ ( =) � $ (=2).

The GCN topology has two convolutional layers (performing the operations de-
scribed above) and two pooling layers, which then feed a fully connected (fc) layer,
whose outputs provide the classification results. Pooling combines similar vertices in
a graph using the greedy Graclus heuristic, built on top of the Metis algorithm [34]
for multilevel clustering [20]. The final layer is a fully connected layer of size 512
along with softmax function for classification.

Each vertex is associated with 18 features: 12 that annotate the element type; 5
that denote the type of net (input, output, bias, supply, ground); and 1 that describes
the label for edges incident on a transistor vertex.

Rather than placing the full burden of recognition on the GCN, a set of simple
postprocessing heuristics are used to complete the annotation. Postprocessing I
involves graph-based heuristics which ensures consistent classification of nodes in
the same channel-connected component (CCC) [67]. Postprocessing II uses circuit-
specific knowledge: e.g., low-noise amplifiers (LNAs) and mixers can be structurally
similar, but an LNA has an antenna input, while a mixer has an oscillating input.
Such information can be designer-specified or inferred from the testbench in the
input netlist.
Testcase 1 is a filter with an OTA and switched capacitors, and contains 32 devices
and 25 nets. The telescopic OTA subcircuit used in this circuit is not seen by the train-
ing set. Using the GCN alone an accuracy of 56/57 is achieved in identifying OTA
and bias circuit nodes. The misclassified vertices belong to the OTA interconnect
ports, and all nodes (100%) are correctly classified after Postprocessing I.
Testcase 2 consists of a phased array system [54], illustrated in Fig. 1(a), containing
a mixer (red), LNA (green), BPF (orange), oscillator (gray), VCO buffer (BUF) and
inverter-based amplifier (INV) (violet) sub-blocks. The graph for the input netlist
has 902 vertices (522 devices + 380 nets). The GCN based classification identifies
nodes belonging to LNA, mixer, and oscillator and passes these results through
postprocessing. After Postprocessing I, the BPF is identified as a combination of an
oscillator with two input transistors. INV and BUF primitives are identified and a
separate hierarchy is created for them which boosts the accuracy to 87.3%. During
Postprocessing II, which uses an antenna label at LNA input and oscillating input for
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Fig. 1: (a) Phased array system [54] and (b) results of GCN after postprocessing,
showing the correctness of vertex classification.

mixer, all nodes are identified correctly. At this point, the classification result after
post-processing is shown in Fig. 1(b): all 522 devices (100%) are classified correctly.

Once the circuit functionality is determined, graph-based approaches are used to
identify primitives (e.g., differential pairs, current mirrors), including annotations
for symmetry constraints at the primitive level and at upper levels of hierarchy. The
annotation scheme is fast (a few minutes for the phased array on a desktop machine),
and is dominated by the runtime of the GCN.

2.3 Array-based Methods for Subcircuit Annotation

The technique above requires the curation of a training set for each type of circuit
structure. While this is feasible for standard circuit blocks, an alternative procedure
can guide layout by recognizing repeated structures in a circuit and lay them out
using array-based methods. Such methods are useful in building structures such as
flash ADCs, binary-weighted DACs, R-2R DACs, and equalizers, where the same
structure is repeated. For exact replicas, it is possible to use graph-based methods
to recognize regularity, but analog designers often witness scenarios where circuit
blocks are nearly identical and require symmetric/regular layout.

The work in [40] presents an ML method for recognizing approximate matches
by error-tolerant matching. The circuit is represented by a bipartite graph as defined
earlier. The approach is based on the concept of graph edit distance (GED) [82],
a measure of similarity between two graphs �1 and �2. Given a set of graph edit
operations (insertion, deletion, vertex/edge relabeling), the GED is a metric of the
number of edit operations required to translate �1 to �2.

Let graphs �1 and �2 represent, respectively, the CS-LNA and the CG-LNA, as
shown in Fig. 2, with element vertices at left and net vertices at right. To transform
�1 to�2, the GED = 4: two edges in�1 are deleted: (capacitor element, ground net)
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and (transistor element (source label), +� # net); two are added: (capacitor element,
+� # net) and (transistor element (source label), ground net).

Fig. 2: Example showing graph embedding for common gate low noise amplifier
(CG LNA) and common source LNA (CS LNA) in noise cancellation LNA.

This work uses a neural network that transforms the original NP-hard problem to a
learning problem [4] for computing graph similarity. Themethodworks in four steps.
In the first step, each node in the graph is converted to a node-level embedding vector.
The second step uses these embedding vectors to create a graph-level embedding of
dimension 3. The lower half of Fig. 2 illustrates these two steps for the graphs for
the CG-LNA and CS-LNA. For each subblock in the circuit, these steps need to be
carried out once, and the graph embeddings are stored for matching any two pairs of
subblocks in later stages. The computational complexity of these two steps is linear
in the number of nodes in the graph.

The last two steps are shown in Fig. 3. The third step feeds the graph-level
embeddings from the second step for two candidate graphs to a trained neural ten-
sor network that generates a similarity matrix between the graphs. The fourth step
then processes this matrix using a fully connected neural network to yield a single
score. This matching method for two subblocks uses the previously stored graph
embeddings instead of the full subblock graphs. The complexity of these two steps
is quadratic in 3, where 3 is bounded by a small constant in practice, the proce-
dure is computationally inexpensive as compared to an exact GED computational
complexity which is exponential in the number of nodes of the graphs involved.

The optimized model is a three-layer GCN with 128 input channels (the number
of channels is halved in each layer), with 8 slices in the neural tensor network (NTN),
and a fully connected network with one hidden layer after the NTN. The trained net
uses 31 = 64, 32 = 32, 33 = 3 = 16.

The method is applied on an FIR Equalizer (Fig. 4(a)) circuit with 10 taps,
each containing a differential pair, a current mirror DAC, and an XOR gate. All
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Fig. 3: GED prediction based on graph embeddings [4]. Here, hi and hj are the graph
embeddings for two similarity candidates, f is an activation function, W(1· · ·K)3 is the
weight tensor, V is a weight vector, and b3 is a bias vector. The subscript “3” reflects
the fact that this is the third step of the procedure.
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Fig. 4: (a) Schematic and (b) layout of an FIR equalizer [32].

blocks in each tap share a common symmetry axis for matching. The first four taps
use a 7-bit current mirror DAC, and the remaining taps have 5-bit current mirror
DAC. To achieve better matching, the first four taps are placed in the center and the
remaining taps are placed around these four, sharing a common symmetry axis. The
layout of equalizer, shown in Fig. 4(b), meets all these requirements. This design
demonstrates the detection and use of multiple lines of symmetry in a hierarchical
way within primitives, within each tap, and globally at the block level.
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Fig. 5: Hierarchical circuit example [45].

2.4 System Symmetry Constraint with Graph Similarity

Many studies for symmetry constraint detection focus on generating constraints for
building block level circuits such as differential amplifiers and comparators. On the
other hand, methods for generating system symmetry constraints have rarely been
studied. There still exists a gap in automatic constraint detection and constraint man-
agement for system level analog designs. Previous methods of constraint detection
have difficulties in scalability and expressiveness when directly migrating to analog
circuit systems.

The system symmetry constraint detection problem for analog circuits can be
described as follows. The hierarchical circuit netlist # is given as input. The circuit
hierarchy is abstracted into a tree ) , with each node representing a subcircuit. For
each subcircuit { ∈ ) , its children � = {6 |6 ⊆ {} are subcircuits referenced in {.
Symmetry constraint pair (68 , 6 9 ) represents that critical matching is needed between
the subcircuits, where 68 , 6 9 ∈ �. The system symmetry constraint detection problem
is to generate constraint pairs for every subcircuit { ∈ ) .

A simplified example of system symmetry constraints is shown in Fig. 5. The
circuit COMP consists of 3 subcircuits: COMP_CORE, INV1 and INV2. The in-
verters in COMP need to be matched with symmetry constraint pair (INV1, INV2).
System constraints do not consider transistor device symmetry in subcircuits, such
as COMP_CORE. If COMP_CORE further contains other subcircuits, the system
constraints between these subcircuits should also be considered.

The hierarchies of the netlist is abstracted into a tree representation. Each subcir-
cuit instantiation is abstracted with a node in the tree. The root of the hierarchy tree
is the entire analog circuit system. The leaf cell nodes are device level instances of
transistors, resistors, capacitors, and diodes. The primal subcircuits are labeled as
analog or digital in the netlist to improve constraint quality. Fig. 6 shows an example
of the extracted hierarchy tree of the corresponding circuit in Fig. 5.

Constraint candidates are classified as valid or invalid during symmetry detection.
Symmetry constraints are detected if the circuit graphs are similar. To improve
constraint quality and reduce false alarms, the neighboring circuit topologies are
extracted on the entire circuit graph. The sizes of extracted subgraphs are determined
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Fig. 6: Hierarchy tree of the circuit in Fig. 5 [45].

by graph centrality. The similarities of the extracted subgraphs are measured with a
scalable graph similarity metric using spectral graph analysis.

The subgraphs of subcircuits with neighboring circuit topologies are extracted to
improve constraint quality and reduce false alarms. Only comparing the subcircuits
is not enough to fully characterize symmetry constraints. The extracted neighboring
circuit size is critical to the quality of symmetry constraint detection. Extracting small
subgraphs would not include enough information. On the other hand, extracted large
subgraphs of closely connected subcircuits would fully include both subcircuits
and all their neighboring circuit topologies. In this case, the subgraphs would be
detected as similar and create unnecessary constrained symmetry. To resolve such
issues, graph centrality is used to determine the extracted subgraph radius. In graph
theory and network analysis, indicators of centrality assign numbers or rankings
to nodes within a graph corresponding to their network position. The subcircuit
graph centers and radius are calculated using graph centrality, such as the Jordan
Center [52], Eigenvector Centrality [52], or PageRank Center [63]. The extracted
subgraph radius is then defined as half of the shortest path distance between the
centers of two graphs.
S3DET [45] uses the two-sample Kolmogorov-Smirnov (K-S) test [7] to measure

the similarity between the eigenvalue distributions of two graphs. The K-S test is a
non-parametric statistical test used to compare a sample with a reference probability
distribution. The extended two-sample K-S test is used to test whether the underlying
probability distributions differ between the two samples. The K-S statistic of two
empirical cumulative distribution function �1,= (G) and �2,< (G) with sample size =
and < is defined as:

�= = sup
G

|�1,= (G) − �2,< (G) |. (3)

It quantifies the difference between the two distributions. In statistics, the ?-value is
the probability of obtaining results at least as extreme as the observed results of a
statistical hypothesis test, assuming that the null hypothesis is correct. The ?-value
from the K-S test measures how likely these samples comes from the same distribu-
tion. A small ?-value concludes that the two samples are from different distributions,
while a large ?-value infers that the distributions match. A scalable graph similarity
algorithm is applied using graph spectral analysis. Since the eigenvalue distribution
of the graph Laplacian is closely linked with the graph structure, the K-S statistic
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of the eigenvalue distribution can be used as a graph similarity metric, with the
following test:

1. The eigenvalues of the two graph Laplacian matrices are calculated and sorted.
2. The two-sample K-S test is conducted to test whether the underlying distributions

differ for the two sets of eigenvalues.
3. The resulting ?-value of the K-S test is used as the graph similarity score.
4. The two graphs are identified as similar if the similarity score is larger than a

preset tolerance, C>;.

2.5 Symmetry Constraint with Graph Neural Networks

Recent advances in graph neural networks (GNNs) show great potential toward a
more accurate and efficient analog layout constraint annotation. As a circuit netlist
can naturally be modeled as a graph, GNNs learn the interconnect structures by
mining graph information. In [22], a graph learning framework with path-based
features to mimic electric potential in circuit analysis is presented. Leveraging a
probability-based filtering technique, the false positive rates can be reduced.

Themethod is based on a supervised inductive graph-learning-basedmethodology
for device-level AMS symmetry constraint extraction. Fig. 7 shows the overall flow,
which consists of three main stages: pre-processing, GraphSage-based detection
model, and post-processing.
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Fig. 7: Workflow of the GNN-based framework in [22].

The pre-processing stage takes raw SPICE analog netlists as input and constructs
graph representations for each circuit. In this stage, feature vectors are extracted
from the type information of the netlists and the structure of the graph. In the
detection model stage, symmetry constraint detection problem is mapped into a
binary classification problem. GraphSage [28], a general inductive approach that
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generates node embeddings for graph data, is adapted to measure the similarity
between a pair of nodes. The model is modified and trained in a supervised manner.
The modified model can produce a set of potential pairs with symmetry constraints.
All predicted pairs will go through a rule-based filter and a probability-based filter in
the post-processing stage to eliminate most of the false positive pairs. After filtering,
our framework produces the symmetry constraints detected.

The device type information is encoded as part of the node feature. To distinguish
device nodes from pin nodes, a two-dimensional vector to indicate whether a node is
a device or a pin is used, where [0, 1], [1, 0] stand for a device and a pin, respectively.
Then, the device types (i.e., capacitor, resistor, diode, NMOS, PMOS, IO) and pin
types (i.e., source, drain, gate, substrate, passive, cathode of a diode, and anode
of a diode) are translated into two one-hot vectors. The representation includes
power/ground nets and a power node and a ground node as auxiliary nodes. These
type-related vectors make up the first two parts of node features.

A novel path-based feature is also proposed inspired by the electric potential in
circuit analysis. The feature is not to simulate the circuit, but to characterize the
“global position” of each node in the graph by VSS/Ground-sourced path lengths.
The neighbor structures of the two nodes are not the same, but the electric potential
values of their corresponding pins are the same according to DC analysis. The path-
based feature intended to capture the intuitive relevance between electric potential
and path from ground node by developing a path-based feature.

Aggregator functions are crucial to the sampling and aggregation process. The
mean aggregator concatenates the current node representation ℎ:−1{ and the average
of aggregated neighbor node representations.N({) stands for the sampled neighbor
set of node { and , is a learnable parameter matrix. f(·) denotes an activation
function that introduces nonlinearity to our model. ReLU is taken as the activation
function f(·) in aggregation process. Equation (4) summarizes the mean aggregator,

ℎ:{ = f

(
, · {ℎ:−1{ ⊕ "��# (ℎ:−1D ,∀D ∈ N ({))}

)
. (4)

To train the aggregator functions mentioned before, we apply binary cross entropy
loss, a classic loss function of binary classification, which facilitates high accuracy
in our applications. The loss function is declared as:

;>BB = − 1
#

#∑
8=1

H8 · log(?A>18) + (1 − H8) · log(1 − ?A>18), (5)

where # denotes the number of node pairs, H8 and ?A>18 are the ground truth label
and predicted label of the 8Cℎ pair respectively.

In [12], an unsupervised inductive graph-learning-based methodology for both
system-level and device-level AMS symmetry constraint extraction is proposed.
Fig. 8 shows the overall computation flow. With the unsupervised learning tech-
nique, the proposed framework learns a strategy for extracting latent information of
matching circuit structures, thus amenable to general AMS designs.
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Fig. 8: Computation flow of the GNN-based framework in [12].

In the framework, a heterogeneous multigraph (i.e., multigraph with various edge
types) for circuit netlist representation is first constructed. The proposed heteroge-
neous multigraph model consists of four different types of edges, representing the
connections between different ports of a devices. Fig. 9 illustrates an example of the
heterogeneous multigraph representation. In the figure, the four devices <0, <1, <2,
and�! are mapped to four graph vertices. Consider the connection from the drain of
<1 to the drain of <2, an edge 41 = (<1, <2, ?drain) is added. Other edges are added
similarly. Note that parallel edges occur if some nets connect to multiple terminals
of a transistor.

To transistor (drain)

To transistor (source)

To transistor (gate)

To passive device

𝐶𝐿

𝑣𝑜𝑑
𝑣𝑖𝑑 𝑚1

𝑚2

𝑚0

𝑚1

𝐶𝐿

𝑚2

𝑚0

Device node

Fig. 9: Example of the heterogeneous multigraph model in [12].

After constructing the heterogeneous multigraph, the initial feature vector for
each vertex in the graph is determined. As modern analog devices are much more
sophisticated, in order to precisely describe a device’s physical structure, dozens
of design parameters are needed. However, using all the design parameters might
cause overfitting in the learning model and restrict its ability to identify nonidentical
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matching structures. Therefore, the used features and their dimension are summarized
in Table 1. The first 15 dimensions form a one-hot vector that represents the devices
type (e.g., NMOS, PMOS, MOM capacitor). Besides, [12] also integrates physical
details of circuit sizing as features, and therefore lowers the false alarms significantly.

Feature Length Description
Device type 15 The one-hot device type encoding.
Geometry 2 The length and width of the device
Layer 1 The number of metal layers.

Table 1: Initial vertex features in the heterogeneous multigraph of the input circuit.

With the constructed multigraph and the initial features, the framework then
iteratively aggregates the features of neighbor vertices to recognize the localized
interconnection and peripheral structures of each vertex. The feature aggregating
function to aggregate the features of  -hop neighbors is shown as follows.

ℎ
(:)
{ = GRU

(
ℎ
(:−1)
{ ,

∑
D∈Nin ({)

,4D{ ℎ
(:−1)
D

)
, (6)

where ℎ (:){ is the feature vector of vertex { at the : th layers of the GNNs, GRU(·, ·)
denote a gated recurrent unit [17],Nin ({) is the in-neighbors of {, and,4D{ represents
the linear transformation matrix with respect to edge 4D{ . In [12],  is set to 2, and
the output dimension of each neural network is set to 18. The GNN model is then
trained with an unsupervised loss function

Ltot =
∑
{∈+
L(I{),

L(I{) = −
∑

D∈Nin ({)
log(f(IᵀD I{)) −

�∑
8=1
ED̃∼Neg({) log(1 − f(IᵀD̃ I{)),

(7)

where I{ = ℎ
( )
{ is the final feature representation of a vertex {, f(G) = 1/(1 +

4−G) is the sigmoid function, E denotes the expected value, Neg({) is the negative
sampling distribution with respect to {, and � denotes the total number of negative
samples. Minimizing the overall loss Ltot, the GNN models learns the strategy to
improve feature similarity between each vertex and its neighbors while enlarging its
discrepancy with the negative samples, and thus implicitly integrates the localized
structure information into each vertex.

With the trained feature vectors of each device, the subcircuit feature represen-
tation is then determined by concatenating the top-" representative vertices. The
PageRank algorithm [63] is utilized to select the top-" representative nodes. The
PageRank score of each vertex { can be computed as follows.
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PR({) = 1 − W|+ | + W ·
∑

D∈Nin ({)

PR(D)
|Nout ({) |

, (8)

where + is the vertex set, W is the damping factor, Nin ({) is the set of in-neighbors
(i.e., ∀D ∈ + such that there exists an direct edge from D to {) of {, andNout ({) is the
set of out-neighbors (i.e., ∀D ∈ + such that there exists an direct edge from { to D) of
{.

Finally, symmetry constraints are generated by comparing the cosine similarity
of the trained features for the subcircuits and devices, where the cosine similarity
_sim of two trained features I8 and I 9 is defined as

_sim =
I8 · I 9
‖I8 ‖‖I 9 ‖

. (9)

Given a similarity threshold _th, if the cosine similarity of the features of two devices
(resp. subcircuits) is larger than_th, then a device-level (resp. system-level) symmetry
constraint between the two objects will be added.

3 Constrained Placement and Routing

3.1 Placement Quality Prediction

During iterative placement and routing, the ability of a candidate layout to meet
performance specifications depends on interconnect RC parasitics. This is illustrated
in Table 2: post-layout parasitics can cause as much as 22% loss of unity gain
frequency from the schematic (pre-layout) values for this testcase.

Characteristic Schematic Layout Change
DC Gain (dB) 39.30 37.25 –5%

Bandwidth (MHz) 10.64 10.47 –2%
Unity Gain Frequency (MHz) 440 383 –22%

Table 2: Schematic and post-layout performance of an OTA.

We overview a set of compact ML-based models for a cost function component
that rapidly predicts the quality of a candidate layout. This can be used to reward
(or penalize) the optimization cost function when the layout meets (or fails to meet)
performance specifications.
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3.1.1 Applying Standard ML Models

In [42], the performance of a circuit is evaluated by a set of performance functions
I1, I2, ... for an analog block. For each I8 , a satisfaction function is defined as

k8 (I8) =
{
1 I8 ≥ \8
I8
\8

I8 < \8
(10)

where \8 is the design specification for I8 . For  performance functions, if |8
represents the weight factor of function 8 s.t.

∑ 
8=1 |8 = 1, the performance Figure of

Merit (FOM) is defined as

Φ =

 ∑
8=1

|8 · k8 (I8) (11)

If all performance specifications are satisfied,Φ = 1. To estimate the probability that
a specification is satisfied, a Probability of Demerit (POD) is defined as:

Δ =

 ∑
8=1

|8 · %(I8 < \8) (12)

where % indicates the probability of violating specifications. MLmodels are built for
Δ, and it is incorporated as an additional component of the placement cost function.

In [42], the feature space corresponds to the set of lengths of all interconnects
in the circuit. All wires are assumed to have the same width and thickness, and
therefore, the RCs of these wires depend on their lengths. Three ML models are
evaluated: neural network (NN) [37], random forest (RF) [6] and support vector
machine (SVM) [68]. Training is performed using a pre-routing estimate based on
the star model. The accuracy of these models on different circuit characteristics of
different OTA designs is shown in Fig. 10. It is seen that NN outperforms both RF
and SVM on every case, while SVM is better than RF on gain, bandwidth, and phase
margin.

3.1.2 Stratified Sampling with SVM/MLP Models

In [19], a framework was proposed for extracting these relationships by building
ML models for each performance constraint, extracting both linear and nonlinear
correlations among all the sensitive parasitics over a multidimensional search space
of RC parasitics. It consists of the following steps:
(1) Feature space pruning: This step reduces the dimension of the feature space of RC
parasitics by (a) identifying variables that the performance constraints are insensitive
to, and (b) by range reduction, which determines upper bounds on the parasitics.
(2) Sparse sampling and linear SVM classification: Next, a sparse sample set in the
updated feature space is generated using stratified sampling based on the Latin hyper-
cube sampling method. These samples are labeled for each performance constraint
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Fig. 10: ML model accuracy on gain, unity gain frequency (UGF), bandwidth (BW)
and phase margin (PM).

associated with performance parameter ?: . For each ?: , a support vector machine
(SVM) model is built to extract correlations among the features. If the classification
error falls below a user-specified threshold, n0, the SVM provides a good model for
?: .
(3) Dense sampling and classification: If the error exceeds n0, a larger number of
samples is generated to drive higher accuracy, labeling each sample. Next, an SVM
is built with the denser samples: if its error is within a user-specified threshold, n1,
the SVM is a good model; else, a multilevel perceptron (MLP) model is built.

Performance 5T OTA Telescopic OTA Two-stage OTA
specifications With Without With Without With Without

framework framework framework framework framework framework
Gain (dB) 20.57 19.09 42.13 38.12 7 26.57 24.38 7

BW (MHz) 103.26 126.20 5.49 7.64 46.84 41.22
UGF (GHz) 1.17 1.14 0.70 0.61 7 1.00 0.92 7

PM (>) 110.33 116.77 133.41 106.50 94.43 82.05
CMRR (dB) 52.08 52.92 69.15 62.14 7 32.71 38.27
PSRR (dB) 21.39 18.47 7 42.45 53.52 26.94 24.37 7

SR (V/`S) 156.62 156.63 414.24 424.23 408.19 386.07
ICMR (V) 0.60-0.75 0.60-0.75 0.55-0.85 0.55-0.85 0.60-0.75 0.60-0.75

Table 3: Post-layout performance of the OTA testcases.

The constraint framework is applied to guide the placement of the above OTA and
VCO circuits within the placement engine in ALIGN [1, 18, 39], adding a penalty
for violating a performance constraint. The performances of the three OTA layouts
(Fig. 11), extracted from post-layout analyses, are summarized in Table 3. All three
of the automatically generated layouts maintain the required design constraints ( ),
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but layouts generated without the framework fail one or more constraints (7). For
the VCO schematic in Fig. 12(a), Fig. 12(b) shows the circuit layout, and it meets all
specifications.

3.1.3 Performance Prediction with Convolutional Neural Networks

In [47], a 3D CNN model is proposed to predict the placement quality of OTA
circuit layouts. The complex and intricate nature of analog circuit behaviors make
extracting performance relevant features from placement extremely important. The
performance impact of a device placement lies in both the placement location and
circuit topology. As an example, the mismatch of differential input pairs has a
larger impact towards offset compared with the load. Thus, to ensure a good and
generalized model, extracted features must be both easily extendable to different
circuit topologies and able to encode effective placement information.

To leverage the success of convolutional neural networks in computer vision
tasks, we represent intermediate layout placement results into 2D images. Instead
of compacting the entire circuit placement into a single image, we separate devices
into different images based on the circuit topology. For OTA circuits, we propose to
divide the circuit into subcircuits based on functionality as shown in Fig. 13.

The devices are abstracted into rectangles and scaled according to the placement
results into a image. The net routing demand is the aggregated pin boundary box for
each net. In all our experiment, the image size is selected to be 64*64. Device types
are encoded as different intensities in the image. Figure 14 show a OTA layout with
the corresponding extracted placement feature images.

Convolutional neural networks have been primarily applied on 2D images as a
class of deepmodels for feature construction. Conventional 2DCNNs extract features
from local neighborhoods on feature maps in the previous layer. Formally, given the
pixel value at position (G, H) in the 9 th feature map in the 8th layer, the convolutional

(a) (b) (c)
Fig. 11: Automated layouts of the (a) 5T OTA (9.63`m × 9.60`m), (b) telescopic
OTA (6.85`m × 18.65`m), and (c) two-stage OTA (7.42`m × 24.49`m) with
constraints generated by the framework. [Not drawn to scale]

(a) (b)

Fig. 12: VCO (a) schematic, (b) layout (10.11`m × 72.78`m) using the method.
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Fig. 13: Subcircuits of OTA [47].

(a) (b) (c) (d)

(e) (f) (g)

Fig. 14: (a) is the OTA layout. (b)-(g) are the extracted image features of the lay-
out with first stage, other stage, feedback, CMFB, bias, and net routing demand,
respectively [47].

layer output {GH
8 9

is given by

{
GH

8 9
= f(

∑
<

%8−1∑
?=0

&8−1∑
@=0

|
?@

8 9<
{
(G+?) (H+@)
(8−1)< + 18 9 ), (13)
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where f(·) is the activation function, 18 9 is the bias for feature map, < indexes over
the set of feature maps in this layer, and |?@

8 9<
is the value of the weight kernel at

the position (?, @) connected to the :th feature map. The output feature is thus the
activation output of a weighted sum over all the kernel maps with the previous layer
images.

3D convolution layers were first proposed to incorporate both spatial and temporal
information for action recognition in videos. In contrast to 2D CNNs where the
convolution kernel is a 2D map, 3D convolution is achieved by convolving a 3D
kernel to the cube formed by stacking multiple contiguous images together:

{
GHI

8 9
= f

©«
∑
<

%8−1∑
?=0

&8−1∑
@=0

'8−1∑
A=0

|
?@A

8 9<
{
(G+?) (H+@) (I+A )
(8−1)< + 18 9

ª®¬ , (14)

with A being the value across the third dimension. Images captured across time from
videos were stacked to form a 3D input tensor for action recognition.

(a)

(b)

Fig. 15: Neural network architecture. (a) Initial separate 2D CNN. (b) 3D CNN
classifier [47].

The use of 3D CNNs to effectively capture the relative location information
between the different placement subcircuits. Fig. 15 shows the overall model of the
3D CNN network for placement quality prediction. Each extracted placement feature
image is augmented into feature sets with coordinate channels. Initial features are
then extracted separately for each feature sets with 2D convolutional layers. The
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outputs are then stacked to form 3D tensors. The 3D tensors are fed to the 3D CNN
for placement quality prediction.

3.1.4 PEA: Pooling with Edge Attention using a GAT

In a graph attention network (GAT) [69] on a graph � (+, �), each node {8 ∈ + is
associated with a vector of features (G1, G2, ..., G3). The features for all nodes form a
matrix - ∈ R=×3 , and the set � is represented by an adjacency matrix � ∈ {0, 1}=×=.
A trained GNN takes - as input and decides the class of an entire graph or the class
of every node in a graph.

In each layer, GAT computation consists of two steps:weighting, which computes
-, , where , ∈ R3×3 is a trainable weight matrix, and aggregation, where each
node {8 ∈ V collects feature information of its neighboring nodes. A generic graph
convolution operation in layer ; is described as

/ (;) = f(Φ(;)
�
- (;), (;) ) (15)

where f(·) is an activation function (e.g., sigmoid), and the form ofΦ� is elaborated
in [69] and Chapter 4. The attention coefficient U8 9 from node { 9 to {8 is given by

U8 9 = softmaxA>| (g8 9 ) =
4g8 9∑

:∈N8 4
g8:

g8 9 = LeakyReLU(0 (;) · [(, (;)T- (;)
8
) | | (, (;)T- (;)

9
)])

(16)

where 0 (;) ∈ R23;+1 is a trainable weight vector, - (;)
8

is a vector corresponding to
node {8 , N8 is the neighborhood of node {8 , · is vector inner product operation,
) means vector transposition and | | is vector concatenation operation. Finally, the
pooling operation is based on DiffPool [81].

The circuit netlist is encoded into a directed graph G(V, E), in which devices
and IO pins are the graph nodes V and the connections between devices are the
graph edges E. In the node feature matrix, -8 ∈ R3 , 8 = 1, 2, ..., =, represents
the feature vector of the 8-th node. The 3 features include: (1) Device type: PMOS,
NMOS, capacitor, current source, GND, etc; (2) Functional module where the device
belongs to, such as bias current mirror, differential pair, and active load; (3) Device
dimension; (4) Device location.

In [41], a new edge attention network, PEA, is introduced. The network, shown
in Fig. 16, is composed of two stages: feature extractor and predictor. The extractor
consists of multiple PEA layers, each of which includes graph convolution and
graph pooling. The predictor is an MLP. The key ingredient of PEA network is
the integration between edge feature/attention and graph pooling. PEA is composed
of four phases: (1) Edge-aware attention construction and compression; (2) Graph
convolution; (3) Node pooling; (4) Edge pooling. PEA customizes a standard GAT
primarily in phases 1 and 4.
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Fig. 16: Overview of the PEA network.

Edge attention was previously proposed in [23] by expanding the attention matrix
from 2D to 3D using channels so that U (;) ∈ R=;×=;×?; , but this approach is expensive
in runtime and memory use. The edge-aware attention model in PEA overcomes this
by defining the raw attention as

Û
(;)
8 9:

= 5 (;) (- (;)
8
, -
(;)
9
, �
(;)
8 9:
) = g8 9� (;)8 9: (17)

where � (;)
8 9:

corresponds to the edge featue and g8 9 is given by Equation (16). The
attention matrix is obtained through bidirectional normalization (BN) as

U (;) = �# (Û (;) ) =


Ũ
(;)
8 9:

= softmaxA>| (Û (;)8 9: )

U
(;)
8 9:

=

=;∑
<=1

Ũ
(;)
8<:

Ũ
(;)
9<:∑=;

D=1 Ũ
(;)
D<:

(18)

where =; is the number of nodes at layer ;. This normalization avoids computing
overflow from multiplication and guarantees that in each channel : , the sum in each
row and each column of U (;) is 1.

After the attention compression, graph convolution is performed in the same way
as the conventional approach, except that the attention is replaced by the compressed
version, 6(U (;) ; 1 (;) ), and this is followed by node-pooling. This is succeeded by
edge pooling, an original contribution of [41], consisting of two sub-steps: channel
pooling and node-space pooling. Please note the node-space here is for edge features
and hence the node-space pooling for edge features is different from conventional
node pooling.

The channel pooling operation ℎ : R?; → R?;+1 is performed as follows:

&
(;)
8 9
= ℎ(U (;)

8 9
;, (;)

4364
)

&
(;)
8 9:

=

?;∑
<=1

U
(;)
8 9<
,4364

(;)
<:

(19)
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where & (;) ∈ R=;×=;×?;+1 is edge-feature-encoded attention and, (;)
4364

∈ R?;×?;+1 is
a trainable weight matrix. This transformation changes the channel dimension from
?; for attention U (;) to ?;+1 for & (;) . Since attention U incorporates edge feature
information in Equation (17), so does &.

Based on the edge-feature-encoded attention & (;) , the node-space pooling for
edge features is designed to be C : R=;+1×=; ×R=;×=;×?;+1 ×R=;×=;+1 → R=;+1×=;+1×?;+1 :

� (;+1) = C (( (;)T, & (;) , ( (;) )

= | |?;+1
:=1 ((

(;)T& (;)··:(
(;) )

(20)

where � (;+1) ∈ R=;+1×=;+1×?;+1 is the edge feature matrix after the complete pooling.
In the pooling step, “· · :” is a slicing operation defined by

(& (;)··: )8 9 = &
(;)
8 9:

8, 9 ∈ 1, 2, ..., =; (21)

where & (;)··: is a 2D matrix for channel : , and all channels are concatenated by
| | : R=;+1×=;+1 → R=;+1×=;+1×?;+1 . This is defined as

* = | |?;+1
:=1+: , *8 9: = (+: )8 9 (22)

where +: ∈ R=;+1×=;+1 , : ∈ 1, 2, ..., ?;+1. Edge pooling is illustrated in Fig. 17.

Fig. 17: Edge pooling in the PEA network.

A PEA network with ! layers can be applied to determine whether performance
constraints H8 > q8 , 8 = 1, 2, ..., < are satisfied. The overall performance cost can be
defined as

Q� =
<∑
8=1

|8 · %(H8 < q8) (23)

where %(H8 < q8) is the probability of violating design specification and can be ob-
tained by the softmax output at PEAnetwork. Theweighting factors|8 , 8 = 1, 2, ..., <
are decided by users and satisfy

∑<
8=1 |8 = 1. Alternatively, the performance cost can

be defined by
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Q� � = %
(
<∑
8=1

|8 ·min(
H8

q8
, 1) < T

)
(24)

where T is the specification of overall performance and can be obtained according
to legacy designs. The classification on whether

∑<
8=1 |8 · min(

H8
q8
, 1) < T can

be obtained through PEA network. Cost Q� � relies on an additional threshold T
compared to Q� . However, it requires only one output from PEA while Q� needs <
outputs from PEA.

Schematic Manual
Conventional CNN PEA
Automatic SS Q� � Transfer Q� � SS Q� � Transfer Q� � Transfer Q�

Gain (dB) 37.0 33.0 23.7 27.7 30.1 32.2 32.5 33.1
UGF (MHz) 1522.9 1167.0 947.6 1003.0 617.1 1072.0 948.9 1042.0
BW (MHz) 21.8 26.8 56.0 33.8 17.5 26.9 22.4 24.8
PM (degree) 82.1 80.7 108.5 113.7 104.7 90.8 93.0 85.5

FOM 1.00 0.85 0.71 0.75 0.66 0.82 0.80 0.83

Area (`<2) - 26.5 24.1 40.4 37.1 34.0 34.4 32.4

Table 4: Results of cascode OTA (SS: Self-Sustained Learning).

A sample result for a cascode OTA is shown in Table 4. Here, self-sustained
learning means the model is trained and applied on the same topology and 80% of
the total data is employed for the training. The testing data are the remaining 20%
of the entire data. The “Transfer” results are obtained by a major training with 80%
of data on S (source) and minor fine tuning with 10% of data on T (target), and
predicting on T. The three PEA-guided results are significantly closer to manual
layout than both the previous work [49] and placement guided by the CNN-based
model [47].

3.2 Analog Placement

The placement stage determines the locations of each module and device. Analog
placement constraints are imposed to the placer to mitigate the layout effects on
circuit electrical behaviors. A typical analog placer optimizes area and wirelength.

3.2.1 Incorporating Extracted Constraints into Analog Placers

Conventionally, analog placement engines takemanually labeled constraints as input.
Recent fully-automated analog layout frameworks, such as MAGICAL [9, 77] and
ALIGN [1, 18, 39], have moved towards replacing human-generated constraints
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with automatic generated constraints. Geometric constraints such as symmetry are
extracted from the netlist, as discussed in Section 2.

To handle performance constraints, the cost function for placement must be aug-
mented using the techniques discussed in Section 3.1. The stochastic approach is a
classical paradigm on solvingAMS placement problems, where a placement solution
is represented with an intermediate data structure, such as O-tree [65] and segment
tree [5]. Then a randomized search scheme, such as a simulated annealing-based op-
timizer, perturbs the underlying data structure and searches for an optimal solution.
Other solution algorithms used for placement include mixed integer linear program-
ming (MILP) [75, 73] and nonlinear programming (NLP) [62, 74, 85], where the
input constraints are coded as part of MILP problem and are automatically handled
during optimization. However, the scalability of MILP-based placer is limited. NLP,
on the other hand, relaxes the hard constraints into penalties in the objective func-
tion and is therefore, in general, more efficient in computation compared to MILP.
When NLP is used, the final placement must be legalized after the termination of
the nonlinear optimization step.

3.2.2 Well Generation and Well-Aware Placement

The well layer defines the doping area that acts as the bulks of MOSFETs. For exam-
ple, a typical P-MOS device needs to be built on an N-well layer and needs contacts
to supply the bulk voltage (usually VDD). In a typical digital design methodology,
wells are pre-designed within standard cells so that well generation is not needed in
layout automation flow. However, analog designmethodologies often use customized
device layouts, and wells are usually distinctly drawn in manual designs. Manual
designs often share wells between transistors to reduce spacing and the number of
contacts to optimize area and interconnection. Furthermore, well geometries also
impact circuit performance through layout-dependent effects, such as the well prox-
imity effect (WPE). Therefore, inserting wells is an additional task to analog layout
flow compared to its digital counterpart.

In [76], a ML-guided well generation framework is proposed. The WellGAN
framework generates wells following the guidance from a generative ML model, a
generative adversarial network (GAN) [24]. Fig. 18 shows the overall flow for the
WellGANframework. In the training phase, anAMScircuit layout database is utilized
to build a conditional-GAN model [55] for the inference. In the inference phase, the
trained GAN model predicts the well region and guides the well generation. Fig. 19
gives an illustration of the WellGAN framework. It presents the placement features
and wells as images. A generator network � produces the well region guidance
from the placement features. A discriminator network � is also utilized to assist the
training process.

Data Representation The WellGAN framework represents the layout with im-
ages. The oxide diffusion (OD) layers are selected to be the input patterns. The first
channel of an image represents the OD layers within the wells, such as PMOS devices
for N-Well generation task. The second channel extracts the OD layers outside the
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Fig. 18: The WellGAN framework [76].

Fig. 19: An illustration of the WellGAN framework [76].

wells, such as PMOS devices. The third channel is for the targeting well guidance.
The ground truth of well regions and the outputs of ML prediction are encoded in
this channel.

Data Preprocessing The data pre-processing step extracts the OD layers and
well shapes from the layouts. In the training phase, the manual-designed layouts are
pre-processed into the three channel images containing OD and well layers. In the
inference phase, the OD layers of the placement are extracted into two channels.
Then clipping, zero-padding, and scaling are applied to transform the layouts into
equally-sized image clips to facilitate the modeling.

Well Guidance Generation WellGAN uses a conditional GAN (CGAN) to pre-
dict the well regions. It takes the processed data and generate the well region guid-
ance. CGAN simultaneously trains two models: a generative model� and a discrim-
inative model �. The generator � observes input G, the input placement features
represented as images, and a random noise vector I. It learns to generate the output
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H, which includes the placement features and well images. On the other hand, the
discriminator � sees H and G and learns to discriminate the “fake” generated H from
the ground truth. The CGAN minimizes the loss function in the training process as
shown in Equation (25).

min
�
max
�
L���# = EG,H∼?3 (G,H) [log� (G, H)]

+ EG∼?3 (G) ,I∼?I [log(1 − � (G, � (G, I)))]
+ _!1EG,H∼?3 (G,H) ,I∼?I [‖H − � (G, I)‖1],

(25)

where ?3 and ?I denote the probability distributions for the learning targeting and
random noise vector I.

TheCGANnetwork is trained to learn thewell regions from training data extracted
from manual layouts.

Post-RefinementAfter obtaining thewell region guidance in image form from the
CGAN model, a post-refinement stage finally generates the well shapes. The image
clips are first merged to reconstruct the whole layout. Then the image is transformed
into a binary image by applying a threshold the pixel values. The polygons in
the binary image is extracted and rectilinearized. The resulting rectangles are then
legalized by mapping them to a coarse grid and resolving remaining spacing rule
violations. After the post-refinement, the resulting well shapes are inserted into the
layout.

Table 5 shows the element-wise difference distribution from the manual layouts.
The smaller mean error and standard deviation demonstrates the WellGAN frame-
work better mimics the manual layout expertise through ML guidance.

Metric WellGAN Baseline
Mean 5.67% 12.65%

Standard Deviation 3.58 10.25

Table 5: Statistics of Manhattan norm of element-wise difference for the test re-
sults [76].

In [84], the WellGAN framework is further extended to integrate with the ana-
log placement engine. Fig. 20 shows the overall flow of the framework. Different
from the WellGAN flow where the well generation is an independent step from the
placement, in the ML-guided well-aware analog placement engine, placement and
well generation are iteratively optimized so that the resulting placement solution is
well-aware and encourages well sharing to achieve further optimized area.

The well-aware global placement is formulated as an NLP optimization problem,
where area, wirelength and constraints are simultaneously considered in the objective
function. The well guidance from the GAN model is transformed as a fence region
objective and being optimized together with the other terms in the NLP problem.
After an iteration of global placement, the current placement is updated and the GAN
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Update NLP Problem

NLP Optimization

Global Placement

GAN Inference

Feature Extraction

Well Legalization

Well Generation

Init. Random Placement

Well and Placement 

Legalization

Area and WL Refinement

Placement Legalization

Overall Framework

Fig. 20: The overall flow of the ML-guided well-aware analog placement [84].

model re-predicts the well guidance. This synergistic process seamlessly integrates
the placement and ML-guided well generation subroutines.

After the global placement, the well shapes are generated and legalized. The
wirelength and area are further optimized with a linear programming-based refine-
ment subroutine. Table 6 shows the experimental results of the well-aware placement
framework over individual well flow and the WellGAN flow. On the average of ra-
tios, the work reduces area (HPWL) by 82% (26%) over “individual wells” and
74% (46%) over “WellGAN”. It demonstrates the effectiveness of the ML-guided
well-aware placement algorithm.

CKTS Individual wells WellGAN Well-Aware Placement
Area HPWL RT Area HPWL RT Area HPWL RT

OTA1 360.2 72.3 1.3 318.0 68.7 3.2 290.3 60.3 3.6
OTA2 756.2 234.7 4.8 750.7 203.1 7.9 599.0 205.2 10.6
OTA3 1055.4 586.6 48.9 1325.6 559.5 43.2 965.6 651.3 34.1
OTA4 3255.2 837.1 39.7 3313.6 799.6 40.1 3033.7 866 42.6
COMP1 175.1 78.8 2.0 144.4 95.1 6.6 82.2 61.8 3.5
COMP2 192.2 93.1 3.0 194.2 105.0 5.6 84.7 48.1 3.6

BOOTSTRAP 177.9 64.5 2.0 130.8 83.4 5.0 97.5 63.2 4.8
RDAC 361.5 209.2 12.4 370.4 287.0 30.2 144.3 137 23.7
Norm. 1.82 1.26 0.64 1.74 1.46 1.33 1.00 1.00 1.00

Table 6: Comparison of area (`<2), HPWL(`<), and runtime (RT(s)) [84].
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3.3 Analog Routing

The routing stage completes the signal connections using available routing resources
to meet various design constraints while meeting certain design objectives.

3.3.1 Incorporating Extracted Constraints into Analog Router

In addition to wirelength optimization and design rule handling, which is the main
target of conventional digital routing, a comprehensive AMS router should consider
more complicated design aspects, including voltage drop, current balancing, par-
asitics, and signal coupling. For better scalability, these design considerations are
usually formulated into geometrical layout constraints. As matching is an essen-
tial concept in analog layouts, techniques for various constraints handling such as
symmetry, common-centroid, topology-matching, and length-matching have been
widely studied. In [72, 64], maze routing algorithms supporting mirror-symmetry
constraints are proposed. In [57, 79], length-matching routing approaches for gen-
eral routing topologies are presented. In [60], an ILP formulation for analog routing
simultaneously considering symmetry, common-centroid, topology-matching, and
length-matching is presented.

For real-world designs, besides the straightforward mirror symmetry constraints,
variants of symmetry constraints are also frequently adopted to describe more so-
phisticated matching structures of nets. [11] extends the conventional symmetry
constraints into four variants: mirror-, cross-, self-, and partial-symmetry, as shown
in Fig. 21 for a bulk technology node.

The aforementioned geometrical constraints enforced onmatching nets during the
routing procedure are usually correlated with the placement constraints as placement
results determine the overall wiring topologies. As a result, routing constraints can
also be annotated by the methods such as the graph similarity and graph neural
network frameworks described in the previous section.

3.3.2 GeniusRoute: ML-Guided Analog Routing

MLmethods can also be useful in generating high-quality routing guidances. In [86],
a new ML-guided analog routing paradigm, GeniusRoute, is proposed. Existing
placement and routing algorithms for AMS circuits usually rely on human-defined
heuristics or constraints, such as symmetry and signal flow, tomitigate layout-induced
performance issues. In practice, the performance of analog circuits is sensitive to even
minor layout changes. The proposed ML-guided analog routing uses a variational
autoencoder (VAE) to learn the routing strategies from manual layout database and
apply the learned knowledge to guide an automatic routing flow.
Data Representation and Pre-Processing The data in the GeniusRoute are repre-
sented as images. Three types of information from a manual layout are extracted to
construct a channel in the image. First, the pins of all nets in layout are drawn in
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Fig. 21: Examples of variants of symmetry constraint. (a) Mirror-symmetry con-
straint. (b) Cross-symmetry constraint. (c) Self-symmetry constraint. (d) Partial-
symmetry constraint [11].

the image to give a global view on the placement. Second, the pins of target nets
are extracted. Third, the routing region of the nets are extracted to act as ground
truth in the training procedure. In the inference flow, only the first two channels are
presented.

A training database is constructed by extracting the images from a set of manually
routed layouts. Tomitigate the shortage of training data, data augmentation is applied
by flipping the images.
VAE-Based Routing Guidance Generation For each net type, a VAE model is
trained to learn the routing strategy for the given net type. The proposed VAE-
based method has two components: an encoder and a decoder. Encoder �q converts
input data G into low-dimensional latent variable vector I, and decoder generates
the routing guidance . from I. VAE uses parametric distribution, usually Gaussian,
to model - , . and / , i.e., %(- |I, \) ∼ N (`(I), f(I)) and I ∼ N(0, �), where
\ denotes the trainable parameters. The training process maximizes the objective
function

log %(. |I) − D ! [&(I |-) | |%(I)], (26)

where log %(- |I) is a reconstruction log-likelihood of . from - and D ! is the
Kullback-Leibler (KL) divergence measuring the dissimilarity between the learned
distribution & and training distribution %. The following reparameterization trick is
often applied: first sample Y ∼ N(0, �) and then compute I = `(-) + f1/2 (-) ∗ Y.
Semi-Supervised Training Algorithm In the GeniusRoute framework, the above
VAE training scheme is extended to a semi-supervised approach to achieve better
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(a) (b) (c) (d) (e) (f)

Fig. 22: Example of inferences of testing set. The upper row shows the ground truth,
and the lower row shows the inference [86].

generalization amid limited training data. The proposed training algorithm takes the
usage of unlabeled layout data and contains three stages.

In the first stage, the unlabeled training data used to train the network to reconstruct
the layouts. The encoder in this stage can see more training data and learn a more
generalized latent space mapping. The objective in this stage is to maximize the
standard VAE objective function for reconstruction task:

log %(- |I) − D ! [&(I |-) | |%(I)] . (27)

In the second stage, labeled routing region data are used to train the network
to learn the routing strategy. The encoder is fixed from the first stage and only the
decoder weights are changed in this stage. The training loss at this stage minimizes
the L2 norm of the distance between ground truth . and inferred output .̂ :

‖. − .̂ ‖2. (28)

In the third stage, the GeniusRoute framework fine-tunes the entire model, in-
cluding both the decoder and encoder. Since the network is already close to a nearly
optimal point, the learning rate is set much lower than that in the first two stages.
This stage maximizes the objective function shown in Equation (26).
Guided Analog Detailed Routing In the inference phase, GeniusRoute adopts the
�∗ search algorithm for detailed routing. It leverages the routing guidance generated
by machine models to make routing decisions.

The routing guidance is considered as cost functions in �∗ search, together with
other common routing objective such as wire length and penalty of vias. The cost
from the routing guidance is composed of two parts: the penalty of violating the
guidance (violating cost), and the cost of routing in the region of other nets demand
(competition cost). During the automatic routing process, the nets are encouraged to
be routed over the ML-generated guidance.

Fig. 22 shows output examples of the model inference on testing sets. Fig. 22(a)
and (c) are outputs of the clock model, Fig. 22(b) and (e) are from differential
nets model, and Fig. 22(c) and (f) are from the power and ground model. The ML
models not only learn well in manual placements, but are also capable of generating
reasonable outputs for machine-generated placement for clock and differential nets.
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Table 7 shows the comparison of simulated performance of a comparator. The
GeniusRoute result has comparable performance to manual routing and outperforms
the router in [72]. Compared to the same router without ML guidance, the proposed
method achieve 67% reduction in input-referred offset, with comparable or better
results in other metrics.

Schematic Manual [72] W/o guide This work
Offset (`V) / 480 1230 2530 830
Delay (ps) 102 170 180 164 163

Noise (`Vrms) 439.8 406.6 437.7 439.7 420.7
Power (`, ) 13.45 16.98 17.19 16.82 16.80

Table 7: Comparison of post-layout simulation results for a comparator [86].

In the experiments, the GeniusRoute is trained on a dataset consisting of com-
parators and amplifiers which are representative analog circuit architectures and
share similar layout strategies. However, AMS circuits include many different circuit
architectures. The layout strategy for those different circuit types can be signifi-
cantly diverse. How to extending the ML-guided routing to other circuit types is an
interesting open question for the future research.

4 Conclusion and Future Directions

In this chapter, we provide an overview of the current state of the art of applying
machine learning to analog layout design automation, from subcircuit recognition
and constraint generation, to placement and routing. Various machine learning tech-
niques, including supervised, semi-supervised, graph neural network, and reinforce-
ment learning, have been applied to different stages of analog layouts.

The semi- or fully-automated open-source analog layout generators ALIGN and
MAGICAL have shown great initial success and provided solid foundations for
future research and development. An example that incorporates ALIGN into a larger
optimization flow is described in [44]: the netlist is sized using a neural network
model and iteratively improved with fast layout generation in the inner loop of
optimization. A transfer learning method for improving the accuracy of the neural
network based on post-silicon measurements is also proposed. The approach is
exercised on a VCO circuit, with silicon results. Another example that incorporates
MAGICAL into a larger AMS system is described in [46], where an automated end-
to-end successive approximation register (SAR) ADC compiler OpenSAR is built.
It leverages automated placement and routing in MAGICAL to generate analog
building blocks. Meanwhile, capacitor digital-to-analog converter (CDAC) arrays
are designed using a template-based layout generator and digital blocks are done by
commercial digital tools. They are then integrated by the hierarchical MAGICAL.

There are still many challenges and research opportunities in applying ML to
analog layout.
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Integrating with Layout Synthesis Flow The ML-based analog layout automation
algorithms have demonstrated many successes in experiments. How to make the
whole flow robust and consistent when incorporating ML models is pending a good
answer. ML predictions are not always correct and sometimes stochastic. A mature
flow might need to compensate the imperfectness of ML-based techniques and
leverage their advantages.

In [48] andMAGICAL1.0 [9], in-loop simulations are involved on building-block-
level to guarantee the quality. However, as the simulation costs grow significantly
for system-level designs, more scalable and sparser in-loop simulations, or better
predictive models will be needed.
Analog layout dataset and data-efficientMLA key challenge for machine learning
is always lack of quality training data. ManyML for analog layout techniques require
manual labeled data to train the neural network model. However, manually labeling
layout data is expensive. How to tackle the limited data is an ongoing open question.
There are several possible answers. In [86], a semi-supervised training algorithm is
presented to achieve higher data efficiency. More data-efficient ML algorithms might
mitigate the issue. In [47], the MAGICAL framework is utilized to generate training
data. Machine-generated or automatic labeled data might be a possible solution.
Understanding the schematics Many existing ML for analog layout techniques
use GNN to model the circuit netlist. However, it is still an open question whether
GNN is powerful enough to learn the graph topology [78]. Typical convolutional
GNN focuses on learning the node-wise features. However, in circuit designs, the
topology and interconnections are crucial to circuit functionality. There are several
ongoing GNN research trends targeting learning the topology and structures, such
as motif-based methods [56] and generative graph models [36].
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